Answer of HW1

In the vertical direction (Fig.1)

 $P = N_2 + 2N_1 \sin \alpha \qquad (1)$

•**Compatibility conditions:** From Fig.2,

$$\frac{\Delta L_1}{\sin(\alpha + \delta \alpha / 2)} = \frac{\Delta L2}{\cos(\delta \alpha / 2)}$$
(2)

A const for
$$L_1 \& L_2$$

 α
 L_1
 N_2
 N_1
 N_1
 N_1
 M_1
 M_2
 M_2
 M_1
 M_1
 M_2
 M_2
 M_1
 M_2
 M_2
 M_1
 M_2
 M_2

N_i: axial force of truss member *A*: cross sectional area

Fig.1

Since ΔL_2 is very small compared to L_2 , $\delta \alpha/2$ is also very small so that $\sin(\alpha + \delta \alpha/2) \approx \sin \alpha$, $\cos(\delta \alpha/2) \approx 1$

Hence,

$$\Delta L_1 = \Delta L_2 \sin \alpha \quad (\prec \Delta L_2) \tag{3}$$

Fig.3

Before yielding: (Hooke's law) After yielding: $\sigma = \frac{N}{A} = Y$ (5) **G Y E: Young's modulus** $\varepsilon = \frac{\Delta L}{L} = \frac{\sigma}{E} = \frac{N}{AE}$ (4)

Load(P) – vertical displacement (DL₂)relation

• In the elastic range for both L_1 and L_2 : From eq(4),

$$\Delta L_1 = \frac{L_1 N_1}{AE} \quad (6-1), \qquad \Delta L_2 = \frac{L_2 N_2}{AE} \quad (6-2)$$

and

$$N_1 = \frac{AE}{L_1} \Delta L_1$$
 (7-1), $N_2 = \frac{AE}{L_2} \Delta L_2$ (7-2)

Substituting eqs. (7) into eq(1), $P = \frac{AE}{L_2} \Delta L_2 + 2 \sin \alpha \frac{AE}{L_1} \Delta L_1$ (8) From eq(8) and eq(3), and $L_2/L_1 = \sin \alpha$ $P = \frac{AE}{L_2} (1 + 2 \sin^3 \alpha) \Delta L_2$ (9)

(b) In the range where L_1 and L_2 are plastic and elastic respectively: From eq(5), N_2 after yielding,

 $N_2 = AY \qquad (10)$

Since L_1 is still elastic range, eq(7-1) is valid for L_1 . Hence by substituting eqs(7-1) and (10) into eq(1) and using eq(3) and $L_2/L_1 = \sin\alpha$, •Constitutive relation

$$P = AY + \frac{2AE}{L_2} \sin^3 \alpha \Delta L_2 \qquad (11)$$

At the load P where $N_2/A = E\Delta L_2/L_2 = Y$, L_2 reaches plastic conditions. Hence at this load, $\Delta L_2 = YL_2/E$ (12) (c) In the range where L_1 and L_2 are both plastic condition:

Since
$$N_1 = AY$$
 (13)
From eqs (10) & (13) and eq(1)
 $P = AY(1 + 2\sin\alpha)$ (14)

At the load P where $N_1/A = E\Delta L_1/L_2 = Y$, L_1 reaches plastic conditions. At this load, $\Delta L_1 = YL_1/E$ (15) From eq(13), eq(3) and $L_2/L_1 = sin\alpha$, ΔL_2 at this load,

